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Abstract 

The hierarchical Pitman-Yor process-based smoothing method applied to language model 

was proposed by Goldwater and by Teh; the performance of this smoothing method is 

shown comparable with the modified Kneser-Ney method in terms of perplexity.  Although 

this method was presented four years ago, there has been no paper which reports that this 

language model indeed improves translation quality in the context of Machine Translation 

(MT). This is important for the MT community since an improvement in perplexity does not 

always lead to an improvement in BLEU score; for example, the success of word alignment 

measured by Alignment Error Rate (AER) does not often lead to an improvement in BLEU. 

This paper reports in the context of MT that an improvement in perplexity really leads to an 

improvement in BLEU score.  It turned out that an application of the Hierarchical Pitman-

Yor Language Model (HPYLM) requires a minor change in the conventional decoding 

process. Additionally to this, we propose a new Pitman-Yor process-based statistical 

smoothing method similar to the Good-Turing method although the performance of this is 

inferior to HPYLM. We conducted experiments; HPYLM improved by 1.03 BLEU points 

absolute and 6% relative for 50k EN-JP, which was statistically significant. 
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1  Introduction 

 

Statistical approaches or non-parametric Machine Learning methods estimate some targeted 

statistical quantities based on the (true) posterior distributions in a Bayesian manner 

(Bishop, 2006) or based on the underlying fixed but unknown (joint) distributions from 

which we assume that we sample our training examples in a frequentist manner (Vapnik, 

1998).  In NLP (Natural Language Processing), such distributions are observed by simply 

counting (joint / conditional) events, such as c(w), c(w0, w1, w2) and  c(w3 | w1, w2) where w 

denotes words and c(·) denotes a function to count events; since such quantities are often 

discrete, it is unlikely that such events will be counted incorrectly at first sight. However, it 

is a well-known fact in NLP that such counting methods are often unreliable if the size of 

the corpus is too small compared to the model complexity. 
 Researchers in NLP often try to rectify such counting of (joint or conditional) events 
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using a technique known as smoothing (Gale, 1994; Kneser and Ney, 1995; Chen and 

Goodman, 1998).  Most smoothing techniques do not have a statistical model but rely on 

some heuristics such as discounting, interpolation, and back-off schemes. 

 This paper discusses a statistical smoothing method based on (hierarchical) Pitman-Yor 

processes, which is a non-parametric generalization of the Dirichlet distribution that 

produces power-law distributions (Goldwater et al., 2006, Teh, 2006). Various pieces of 

research have been carried out in which hierarchical Pitman-Yor processes have been 

applied to language models (Hierarchical Pitman-Yor Language Model (HPYLM) (Teh, 

2006; Mochihashi and Sumita, 2007; Huang and Renal, 2009) whose generative model uses 

hierarchies of n-grams. This model is shown to be superior to the interpolated Kneser-Ney 

methods (Kneser and Ney, 1995) and comparable to the modified Kneser-Ney methods 

(Chen and Goodman, 1998) in terms of perplexity.  Hierarchical Pitman-Yor processes have 

been successfully applied to word segmentation as well (Goldwater et al., 06; Mochihashi 

et al., 2009). 

 This paper is organized as follows. Mentioning language model and perplexity in 

Section 2, Section 3 briefly reviews smoothing methods. Section 4 discusses HPYLM, 

Good-Turing Pitman-Yor language model (GTPYLM), and a minor change in the PB-SMT 

decoding algorithm. Experimental results are presented in Section 5. Section 6 concludes 

and provides avenues for further research. 

 

 

2 Language Model and Perplexity 
 

Let wi denotes a word, and W denotes a sequence of words w1,w2,…,wn. A language model 

aims at modelling p(W) ( = p(w1,…,wm)) such that p(W) predicts the probability of picking 

up a sequence of words W. In an n-gram language model, the probability p(w1,…,wm) of 

observing the sentence w1,…,wm is approximated as in (1): 

 

(1) 

Note that                          holds by the product rule to express the 

joint distribution for a sequence of observations, and P(wn | w1,…,wn-1) = P(wn | wn-m,…,wn-

2,wn-1) holds by the Markov assumption of the history up to m words. 
 The measure to evaluate the performance of language model is often done by perplexity 

defined as in (2): 

 

 

(2) 

The perplexity suggests how well it predicts a separate test sample x1,…,xN also drawn from 

p, for a given a proposed model q. 
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3 Smoothing Methods 

This section reviews various smoothing methods in the context of language model 

(Manning and Schutze, 1999; Jurafsky and Martin, 2009; Koehn, 2010). These are 

developed based on the heuristic combination of absolute discount, back-off, interpolation 

schemes, and so forth. Without loss of generality this subsection explains the difference of 

smoothing methods using the bi-gram language model. We use the notation: wi-1wi denotes 

the consecutive two words, •w denotes the consecutive two words where the first word is 

any word, and c(·) denotes a function which counts the words specified as its argument. The 

condition c(wi-1wi ) > 0 means that the bi-gram wi-1wi  appeared in the corpus. (Hence, in 

most cases below, the condition otherwise means that the bi-gram wi-1wi  did not appear in 

the corpus. 
 We start with a maximum likelihood method, which is shown in (3). 

 (3) 

Since the maximum likelihood reflects purely statistics, there is no value assigned for 

unobserved n-grams, which is shown in otherwise in (3). If we subtracts a fixed (absolute) 

discount D from each count in order to allocate the mass for unobserved bi-grams, this is 

called the absolute discounting method, which is shown in (4): 

 

(4) 

If we take into account the diversity of histories for the unobserved bi-grams, this is called a 

Kneser-Ney smoothing method (Kneser and Ney, 1995). With the definition of the count of 

histories for a word as in (5), 

 

(5) 

the raw counts of the maximum likelihood estimation is replaced with this count of 

histories for a word. In sum, a Kneser-Ney method is written as in (6): 

 

 

 

(6) 

If we combine the ideas behind interpolation and back-off, we can combine two terms in 

the right-hand side in (6). This is called an interpolated Kneser-Ney method (Chen and 

Goodman, 1998), which is shown in (7): 
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(7) 

 

Now, if we have an intuition that an absolute discount Dn for each n-gram takes different 

values (but a fixed values) shown in (8), 

 

(8) 

this method makes a  modified Kneser-Ney method (Chen and Goodman, 1998), which is 

shown in (9). Note that we derive (9) from (7) using (8) for different n-grams. Note that 

similarly with (7), although each distribution has the case when bi-gram is not observed it is 

omitted from (9). 

 (9) 

 A Good-Turing method (Good, 1953) introduces the count-of-counts Nc shown in (10), 

 (10) 

which is the number of different words that were seen exactly c times. Using this Nc this 

method infers the zero probability mass. Let N denotes the total number of counts. The 

modified count c* can be obtained by 

 (11) 

Using these quantities, the probability mass for unobserved n-grams can be calculated as in 

(12) where the mass for unobserved n-grams are uniformly allocated: 

 (12) 
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4   Hierarchical Pitman-Yor Language Model 

 

This section describes the statistical smoothing method based on the hierarchical Pitman-

Yor process, which is a non-parametric generalization of the Dirichlet distribution that 

produces power-law distributions (Teh 2006; Goldwater et al., 2006). Hence, this 

smoothing method of hierarchical Pitman-Yor processes does a smoothing task under the 

prior knowledge that the underlying distribution has power-law properties. Following 

descriptions are based on various literatures (Teh, 2006; Mochihashi and Sumita, 2007; 

Mochihashi et al., 2009; Huang and Renal, 2009). 
 Our algorithm addresses two concerns. The first concern is to update our language model- 

based on the hierarchical Pitman-Yor process-based smoothing method, which is described  

in the first subsection. The second concern is to incorporate the zero probabilities based on  

the hierarchical Pitman-Yor process-based smoothing method. A Phrase-Based Statistical  

Machine Translation (PB-SMT) decoder uses constant zero probabilities for unseen n-

grams, while the zero probabilities based on the language model based on the hierarchical 

Pitman-Yor process-based smoothing method are not constant but are different based on 

context, e.g. (n-1)-gram hierarchies.   

 

4.1 HPYLM: Generative Model 

 

HPYLM is constructed in the following way encoding the property of the power-law 

distribution. A graphical model of HPYLM is shown in Figure 1. 

 
  Figure 1:  
 

 

 

 Firstly, we use a Pitman-Yor process. The Pitman-Yor process PY(d, θ, G0) is a 

distribution over a base distribution G0  having two parameters d and θ where d is called a 

Figure 1: Graphical model of hierarchical Pitman-Yor language 

model. 
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discount parameter (which is also called a concentration parameter) and θ is called a 

strength parameter (Pitman, 1995). A strength parameter θ > -d controls the degree to 

which the new draw is assigned to among those which are not appeared in the past, while a 

discount parameter 0 ≤ d < 1 specifies the degrees to which the new draw resembles the 

base distribution G0.  As far as 0 < d < 1 the Pitman-Yor process PY(d, θ, G0) poses a 

characteristic to generate a power-law distribution, while d = 0 the Pitman-Yor process 

reduces to a Dirichlet process. The characteristic of a power-law distribution is among one 

of the motivation of this generative procedure. A power-law phenomenon can be 

characterized by those two: the more words have been assigned to a draw from G0, the 

more likely subsequent words will be assigned to the draw (the richer-gets-richer property), 

while the more we draw from G0, the more likely a new word will be assigned to a new 

draw from G0. 
 Secondly, we place a Pitman-Yor process as a prior in this generative model. Let u be a 

given context, π(u) be a function whose parameter is a context u, d|u| be a discount 

parameter of the length |u| of its context, θ|u| be a strength parameter of the length |u| of its 

context, and Gu(w) be the probability of the current word taking value w for a given context 

u. Using a Pitman-Yor process as the prior for as in (13): 

 (13) 

where π(u) is a function whose parameter is a context u, the discount and strength 

parameters are functions of the length |u| of the context, while the mean vector is Gπ(u), the 

vector of probabilities of the current word given all but the earliest word in the context. 
 Thirdly, π(u) is defined as the suffix of u consisting of all but the earliest word in 

Equation (1) as (Teh, 2006). This signifies that u is n-gram words and π(u) is (n-1)-gram 

words; this induction of Equation (1) makes an n-gram hierarchy. 
 Fourthly, as the last sentence suggests, such a prior of the Pitman-Yor processes can be 

placed recursively over Gπ(u) in the generative model, with a base distribution G0 sharing 

across the different Pitman-Yor processes Gj, as in Equation (14): 

 (14) 

This is repeated until we get to G0, the vector of probabilities over the current word given 

the empty context Ø. Let W be a fixed and finite vocabulary of V words. G0  is the global 

mean vector, given a uniform value of G0 = 1 / V for all w  . 
 

 

4.2 HPYLM: Inference 

 

One procedure to do an inference in order to generate words drawn from G is called 

Chinese restaurant process, which iteratively marginalizes out G. Note that when the 

vocabulary is finite, PY(d, θ, G0) has no known analytic form.   
 We assume the language modelling. Let h be an n-gram context; for example in 3-gram, 

this is h = {w1, w2}. A Chinese restaurant contains an infinite number of table t, each with 

infinite seating capacity.  Customers, which are the n-gram counts c(w|h), enter the 

restaurant and seat themselves over the tables 1, ..., thw·●. The first customer sits at the first 

available table, while each of the subsequent customers sits at an occupied table with 

probability proportional to the number of customers already sitting there chwk – d, or at a 

new unoccupied table with probability proportional to θ + dtk●  as is shown in (3): 
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(15) 

where chwk is the number of customers seated at table k until now, and tk● = Σw tkw is the total 

number of tables in h. An occupied table of the first line in (15) corresponds to a Dirichlet 

process where the parameter d specifies the degree to which the distribution resembles the 

base distribution, and an unoccupied table of the second line in (15) corresponds to a 

Poisson process where the parameter θ controls the rate of allocation of a new draw. 
 Hence, the predictive distribution of n-gram probability in HPYLM is recursively 

calculated as in Equation (16): 

 

(16) 

where p(w|h') is the same probability using a (n-1)-gram context h'. The case when tkw = 1 

corresponds to an interpolated Kneser-Ney smoothing (Chen and Goodman, 1998). 
 Implementation of this inference procedure relates to the Markov chain Monte Carlo 

(MCMC) sampling methods. Hence, for a given n-gram hierarchies from a training set, d 

and θ (as well as Gj) are solved as a non-parametric Machine Learning method. The 

simplest way is to build a Gibbs sampler which randomly selects n-gram words, draws a 

binary decision as to which (n-1)-gram words originated from, and updates the language 

model according to the new lower-order n-grams (Goldwater et al., 2006).  A blocked Gibbs 

sampler is proposed by Mochihashi et al. (Mochihashi et al., 2009), which is originally 

proposed for segmentation. This algorithm is an iterative procedure, which randomly 

selects a n-gram word, removes the sentence data of this n-gram word, and updates by 

adding a new sentence according to the new n-grams. This procedure is expected to mix 

rapidly compared to the simple Gibbs sampler. 
 Note that the case when tkw = 1 corresponds to an interpolated Kneser-Ney smoothing 

(Chen and Goodman, 1998). Teh explains this in this way (Teh, 2006): If we restrict thw● to 

be at most 1 as in (17): 

 

(17) 

we will obtain the same discount value so long as chw•>0, i.e. absolute discounting. 

Furthermore, supposing that the strength parameters are all θ|k| = 0, the predictive 

probabilities in Equation (5) now directly reduce to the predictive probabilities given by 

interpolated Kneser-Ney smoothing method (Chen and Goodman, 1998). 
 

4.3  Good-Turing Pitman-Yor Language Model 

 
We use the same generative model which uses the Pitman-Yor process as a prior in 

Equation (2) once (not recursively), and let us now consider π(u) as a count-counts function. 

(This is also   known as event-counts or count of counts.)  We refer to this model as Good-

Turing Pitman-Yor Language Model (GTPYLM). Our intention here is to incorporate a 

prior knowledge that a distribution takes a power-law distribution, as well as incorporating 

the zero-frequency mass. 
 We use the notation of (10) and (11). Then, by (14), the predictive distribution of n-gram 

probability in GTPYLM is computed as in (18): 
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 (18) 

Note that this formulation does not avoid the problem of data sparseness of Nc when c is 

large which requires to obtain in the similar way as other literatures, such as Gale (1994). 

 

4.4  PB-SMT Decoding Algorithm for HPYLM and GTPYLM 

 

A minor difference in the decoding process is required. In a test sentence, if we encounter 

unseen n-grams, a conventional PB-SMT decoder looks up the probability with constant 

zero-probabilities. However, our algorithm should look up the corresponding probabilities 

based on the hierarchical Pitman-Yor processes. We calculate these zero-probabilities using 

the parameters that we derived during obtaining HPYLM. 

 There are two way to incorporate this: 1) just before we do decoding, we update a 

language model by supplying a test sentence in terms of zero-probabilities, and 2) we 

modify a PB-SMT decoder to incorporate this difference. Due to the easy implementation, 

we take the approach 1) here, but the effect would be the same.   

 Our procedures are follows. Firstly, we prepare HPYLM parameter file P0(w) which we 

obtained when we calculate HPYLM.  This HPYLM parameter file contains the parameters 

in Chinese restaurant processes, such as the number of tables, d, θ, and so forth. Such 

parameters enable us to calculate the zero-probabilities for unseen n-grams in a test 

sentence.  The overall algorithm to obtain updated HPYLM is shown in Algorithm 1. 
 

1. Given: a test sentence, HPYLM p(w), HPYLM parameter file p0(w). 

2. By generating possible n-gram candidates, using p0(w) we update HPYLM p'(w). 
3. Run a decoder which looks up the updated HPYLM p'(w). 

 

    Algorithm 1. Decoding algorithm for HPYLM p(w) 
 

 

5  Experimental Results 
 

5.1  Experimental Setup 

 

For all the experiments, we used a standard log-linear phrase-based MT system based on 

Moses (Koehn et al., 2007). The GIZA++ implementation (Och and Ney, 2003) of IBM 

Model 4 was used for word alignment, followed by the grow-diag-final heuristics as phrase 

extraction. We used SRILM (Stolcke, 2002) to derive a 5-gram language model. We 

performed MERT (Och, 2003) and use a Moses decoder (Koehn et al., 2007). The baseline 

1 derived a 5-gram language model by SRILM with modified Kneser-Ney method (Chen 

and Goodman, 1998) and the baseline 2 used with SRILM with Good-Turing method 

(Good, 1953). 

 For the HPYLM and GTPYLM, we obtained the results by a method using a blocked 

Gibbs sampler (Mochihashi et al., 2009), which was considerably more efficient compared 

to a conventional Gibbs sampler (Goldwater et al., 2006; Teh, 2006). In this experiment, we 

used a phrase table derived by the conventional method.  Perplexity was measured in terms 
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of the same test set. 

 

5.2  Experimental Results 

 

We conducted an experimental evaluation for JP-EN on the NTCIR-8 corpus (Fujii et al., 

2010; Okita et al., 2010d) and for FR-EN and ES-EN on Europarl (Koehn, 2005). We 

randomly extracted two training corpora of 50k and 200k sentence pairs, where we used  

 

 

 

 

size system EN-JP perplexity JP-EN perplexity 

50k baseline1 16.33 71.460 22.01 131.438 

50k baseline2 16.20 72.435 22.81 136.812 

50k HPYLM 17.36 66.012 22.81 116.074 

50k GTPYLM 17.27 67.112 22.70 120.320 

200k baseline1 23.42 59.607 21.68 117.780 

200k baseline2 23.36 58.587 21.38 119.130 

200k HPYLM 24.22 52.295 22.32 105.220 

200k GTPYLM 23.22 53.332 22.21 110.120 

 

Table 1. Performance between EN-JP. 

 

 

 

size system FR-EN perplexity EN-FR perplexity 

50k baseline1 17.68 188.269 17.80 188.329 

50k baseline2 17.58 190.874 17.60 190.314 

50k HPYLM 17.81 168.221 18.32 178.269 

50k GTPYLM 17.01 178.303 18.33 179.200 

200k baseline1 18.40 162.573 18.20 165.839 

200k baseline2 18.19 165.232 18.02 168.989 

200k HPYLM 18.99 148.338 18.60 153.921 

200k GTPYLM 18.70 152.104 18.50 160.332 

 

Table 2. Performance between FR-EN. 
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size system ES-EN perplexity EN-ES perplexity 

50k baseline1 16.21 198.274 15.17 156.861 

50k baseline2 16.01 198.274 15.01 152.435 

50k HPYLM 16.91 194.773 15.87 151.434 

50k GTPYLM 16.68 196.403 15.75 153.224 

200k baseline1 16.87 168.431 17.62 154.273 

200k baseline2 16.37 174.856 17.32 168.754 

200k HPYLM 17.50 152.312 18.20 145.223 

200k GTPYLM 17.15 156.440 18.10 146.211 

 

Table 3. Performance between ES-EN. 

 

 

1,200 sentence pairs (NTCIR) and 2,000 sentence pairs (Europarl) for the development set, 

and 1,119 (EN-JP) / 1,251 (JP-EN) sentence pairs (NTCIR) and 2,000 sentence pairs 

(Europarl; test2006) for the test set. The results are shown in Table 1, 2, and 3. HPYLM 

obtained the best results in all the cases; the best among them was 1.03 BLEU points 

absolute and 6% relative for 50k EN-JP which was statistically significant verified by 

bootstrap re-sampling (Koehn, 04). GTPYLM obtained the second best results in all  the 

cases; an improvement of 0.90 BLEU points absolute and 5% relative for 50k EN-JP.  

These experiments also show that the perplexity measure may be reliable for the final 

performance measured by BLEU score. 

 

 

6  Conclusion 

 

This paper presents an application of the hierarchical Pitman-Yor process-based language 

model to MT. Firstly, although the performance of HPYLM was reported in terms of 

perplexity, there have been no reports, as far as we know, in terms of BLEU in the MT 

context. We showed that there was a gain with a minor change in the decoding process. 

Although Teh reported that HPYLM showed a comparable performance with the modified 

Kneser-Ney method, we obtained better results than the modified Kneser-Ney method here.  

Secondly, we proposed an alternative language model using the Pitman-Yor process 

applying the count-counts distribution of the Good-Turing method.  The performance of 

this was not as successful as HPYLM, but it was better than both the modified Kneser-Ney 

and Good-Turing methods. Furthermore, this was statistically significant. 

 There are several avenues for further research. Firstly, our results for our three language 

pairs under 200k sentence pairs would support the basic effectiveness of this statistical 

smoothing method for language modelling. We would like to extend our work to different 

language pairs and larger data sets. Note that for the giga-sized data, this method will not be 

required since smoothing is a method to resolve the sparse data problem. Secondly, 

although our experiments are limited only to language models, it would be possible to apply 

the similar smoothing method to the translation model which reflects prior knowledge. In 
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our context, we add prior knowledge into the translation model by a Multi-Word 

Expression-sensitive word aligner (Okita et al., 2010a) and by a noise reduced word aligner 

(Okita, 2009; Okita et al., 2010b). We believe that in such cases, smoothing methods are 

necessary because the surface of posterior probability is considered to be perturbed by such 

prior knowledge. The preliminary results have been obtained for the translation model 

enhanced with prior knowledge such as Multi-Word Expressions, paraphrases and Out-Of-

Vocabulary words (Okita and Way, 2010c). We used the smoothing method similar to 

HPYLM for translation model and obtained slightly better results for small corpus between 

EN and JP. Thirdly, we may extend our approach to syntax-based or dependency-based  

language models. 
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Appendix.A. Discussion about Model Complexity: Model Selection Method and 

Smoothing Method 

Modern Machine Learning algorithms, such as Support Vector Machines (Boser et al., 1992; 

Vapnik, 1998), seek to obtain small generalization error over unseen data. This mechanism 

is implemented by minimizing both of the risk and the capacity of the function class 

automatically. Suppose that we are not able to adjust generalization error automatically. 

Instead, we use some measure to evaluate model complexity, such as An Information 

Criterion (or Akaike Information Criterion; AIC) (Akaike, 1974), Bayesian Information 

Criterion (BIC) (Schwarz, 1978), and Minimal Description Length (MDL) (Rissanen, 1978). 

Now, we start with some model complexity and try to adjust this model complexity for a 

given data in order to obtain the best generalization error over unseen data.  If the initial 

model complexity is under the point which achieves the best generalization error (or an 

equilibrium point), this is called `under-fitting' (a point A3 in Figure 2). If the initial model 

complexity is beyond the point which achieves the best generalization error, this is called 

`over-fitting' (a point A4 in Figure 2). Hence, we can say that a model selection technique 

aims at transferring A3 or A4 into an equilibrium state at A2. 

 Similarly, we may explain the statistical smoothing technique of hierarchical 

Pitman-Yor process using this figure.  Firstly, the mass for zero probabilities which are the 

results of this smoothing technique are all virtual samples which are not existed in training 

data. Hence the arrow is from left to right. Secondly, under unsupervised learning, we may 

use the knowledge that an infinite mixture models will lead to the best number of clusters 

(Neal, 1991), or at least trying to achieve such best configuration, at a point with a small 

generalization error (or with small energy). Since the parameters which are targeted in a 

(hierarchical) Pitman-Yor process method are two, a strength parameter θ and a discount 
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parameter d, for each process, the model complexity will not change so long as the n-gram 

hierarchies are not augmented. Hence, this situation can be depicted as the right arrow from 

the point A1 to A2. It is noted that in language modelling, if we see the number of words m 

as the number of parameters, the complexity of this n-gram system becomes O(mn). 

However, the statistical smoothing methods do not treat these n-gram words as parameters. 

 

 

 

Figure 2: Schematic explanation of difference between smoothing methods 

and model selection methods. 


